Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
RMD Open ; 8(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1607909

ABSTRACT

BACKGROUND: Patients with immune-mediated rheumatic diseases (IMRDs) are commonly treated with immunosuppressors and prone to infections. Recently introduced mRNA SARS-CoV-2 vaccines have demonstrated extraordinary efficacy across all ages. Immunosuppressed patients were excluded from phase III trials with SARS-CoV-2 mRNA vaccines. AIMS: To fully characterise B-cell and T-cell immune responses elicited by mRNA SARS-CoV-2 vaccines in patients with rheumatic diseases under immunotherapies, and to identify which drugs reduce vaccine's immunogenicity. METHODS: Humoral, CD4 and CD8 immune responses were investigated in 100 naïve patients with SARS-CoV-2 with selected rheumatic diseases under immunosuppression after a two-dose regimen of SARS-CoV-2 mRNA vaccine. Responses were compared with age, gender and disease-matched patients with IMRD not receiving immunosuppressors and with healthy controls. RESULTS: Patients with IMRD showed decreased seroconversion rates (80% vs 100%, p=0.03) and cellular immune responses (75% vs 100%, p=0.02). Patients on methotrexate achieved seroconversion in 62% of cases and cellular responses in 80% of cases. Abatacept decreased humoral and cellular responses. Rituximab (31% responders) and belimumab (50% responders) showed impaired humoral responses, but cellular responses were often preserved. Antibody titres were reduced with mycophenolate and azathioprine but preserved with leflunomide and anticytokines. CONCLUSIONS: Patients with IMRD exhibit impaired SARS-CoV-2 vaccine immunogenicity, variably reduced with immunosuppressors. Among commonly used therapies, abatacept and B-cell depleting therapies show deleterious effects, while anticytokines preserved immunogenicity. The effects of cumulative methotrexate and glucocorticoid doses on immunogenicity should be considered. Humoral and cellular responses are weakly correlated, but CD4 and CD8 tightly correlate. Seroconversion alone might not reflect the vaccine's immunogenicity.


Subject(s)
COVID-19 , Rheumatic Diseases , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunogenicity, Vaccine , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
2.
Sci Rep ; 11(1): 16430, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1356582

ABSTRACT

Until there is an effective implementation of COVID-19 vaccination program, a robust testing strategy, along with prevention measures, will continue to be the most viable way to control disease spread. Such a strategy should rely on disparate diagnostic tests to prevent a slowdown in testing due to lack of materials and reagents imposed by supply chain problems, which happened at the beginning of the pandemic. In this study, we have established a single-tube test based on RT-LAMP that enables the visual detection of less than 100 viral genome copies of SARS-CoV-2 within 30 min. We benchmarked the assay against the gold standard test for COVID-19 diagnosis, RT-PCR, using 177 nasopharyngeal RNA samples. For viral loads above 100 copies, the RT-LAMP assay had a sensitivity of 100% and a specificity of 96.1%. Additionally, we set up a RNA extraction-free RT-LAMP test capable of detecting SARS-CoV-2 directly from saliva samples, albeit with lower sensitivity. The saliva was self-collected and the collection tube remained closed until inactivation, thereby ensuring the protection of the testing personnel. As expected, RNA extraction from saliva samples increased the sensitivity of the test. To lower the costs associated with RNA extraction, we performed this step using an alternative protocol that uses plasmid DNA extraction columns. We also produced the enzymes needed for the assay and established an in-house-made RT-LAMP test independent of specific distribution channels. Finally, we developed a new colorimetric method that allowed the detection of LAMP products by the visualization of an evident color shift, regardless of the reaction pH.


Subject(s)
COVID-19 Testing/methods , COVID-19/virology , Colorimetry/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Humans , Pandemics , Portugal/epidemiology , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva/chemistry , Saliva/virology , Sensitivity and Specificity
4.
RMD Open ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1032636

ABSTRACT

BACKGROUND: The recent outbreak of COVID-19 has raised concerns in the rheumatology community about the management of immunosuppressed patients diagnosed with inflammatory rheumatic diseases. It is not clear whether the use of biological agents may suppose a risk or protection against SARS-CoV-2 infection; however, it has been suggested that severe respiratory forms of COVID-19 occur as a result of exacerbated inflammation status and cytokine production. This prompted the use of interleukin 6 (IL-6) (tocilizumab and sarilumab) and IL-1 inhibitors (anakinra) in severe COVID-19 disease and more recently JAK1/2 inhibitor (baricitinib). Therefore, patients with rheumatic diseases provide a great opportunity to learn about the use of biological agents as protective drugs against SARS-CoV-2. OBJECTIVES: To estimate COVID-19 infection rate in patients treated with biological disease-modifying antirheumatic drugs (bDMARDs) for inflammatory rheumatic diseases (RMD), determine the influence of biological agents treatment as risk or protective factors and study the prognosis of patients with rheumatic diseases receiving biological agents compared to the general population in a third-level hospital setting in León, Spain. METHODS: We performed a retrospective observational study including patients seen at our rheumatology department who received bDMARDs for rheumatic diseases between December 1st 2019 and December 1st 2020, and analysed COVID-19 infection rate. All patients who attended our rheumatology outpatient clinic with diagnosis of inflammatory rheumatic disease receiving treatment with biological agents were included. Main variable was the hospital admission related to COVID-19. The covariates were age, sex, comorbidities, biological agent, duration of treatment, mean dose of glucocorticoids and need for intensive care unit . We performed an univariate and multivariate logistic regression models to assess risk factors of COVID-19 infection. RESULTS: There were a total of 4464 patients with COVID-19 requiring hospitalisation. 40 patients out of a total of 820 patients with rheumatic diseases (4.8%) receiving bDMARDs contracted COVID-19 and 4 required hospital care. Crude incidence rate of COVID-19 requiring hospital care among the general population was 3.6%, and it was 0.89% among the group with underlying rheumatic diseases. 90% of patients receiving bDMARDS with COVID-19 did not require hospitalisation. Out of the 4464 patients, 869 patients died, 2 of which received treatment with biological agents. Patients with rheumatic diseases who tested positive for COVID-19 were older (female: median age 60.8 IQR 46-74; male: median age 61.9 IQR 52-70.3) than those who were negative for COVID-19 (female: median age 58.3 IQR 48-69; male: median age 56.2 IQR 47-66), more likely to have hypertension (45% vs 26%, OR 2.25 (CI 1.18-4.27),p 0.02), cardiovascular disease (23 % vs 9.6%, OR 2.73 (1.25-5.95), p 0.02), be smokers (13% vs 4.6%, OR 2.95 (CI 1.09-7.98), p 0.04), receiving treatment with rituximab (20% vs 8%, 2.28 (CI 1.24-6.32), p 0.02) and a higher dose of glucocorticoids (OR 2.5 (1.3-10.33, p 0.02) and were less likely to be receiving treatment with IL-6 inhibitors (2.5% vs 14%, OR 0.16, (CI 0.10-0.97, p 0.03). When exploring the effect of the rest of the therapies between groups (affected patients vs unaffected), we found no significant differences in bDMARD proportions. IL-1 inhibitors, IL-6 inhibitors, JAK inhibitors and belimumab-treated patients showed the lowest incidence of COVID-19 among adult patients with rheumatic diseases. We found no differences in sex or rheumatological disease between patients who tested positive for COVID-19 and patients who tested negative. CONCLUSIONS: Overall, the use of biological disease-modifying antirheumatic drugs (bDMARDs) does not associate with severe manifestations of COVID-19. Patients with rheumatic disease diagnosed with COVID-19 were more likely to be receiving a higher dose of glucocorticoids and treatment with rituximab. IL-6 inhibitors may have a protective effect.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antirheumatic Agents/therapeutic use , Biological Factors/therapeutic use , COVID-19 Drug Treatment , Disease Outbreaks , Glucocorticoids/therapeutic use , Protective Agents/therapeutic use , Rheumatic Diseases/drug therapy , Rituximab/therapeutic use , SARS-CoV-2/isolation & purification , Aged , Antibodies, Monoclonal, Humanized/pharmacology , COVID-19/epidemiology , Female , Humans , Interleukin-6/antagonists & inhibitors , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spain/epidemiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL